Email
Email

La huella magnética de la Vía Láctea.





El observatorio espacial Planck de la ESA nos desvela la estructura del campo magnético de nuestra Galaxia. Esta nueva imagen fue confeccionada a partir de las primeras observaciones a cielo completo de la luz polarizada emitida por el polvo interestelar de la Vía Láctea.

La luz es una forma de energía muy familiar, pero alguna de sus propiedades permanecen ocultas para el ojo humano. Una de ellas – la polarización – almacena una gran cantidad de información sobre lo que ocurrió a lo largo de la trayectoria de un rayo de luz, y es de gran utilidad para los astrónomos.

La radiación electromagnética se puede describir como la superposición de un campo eléctrico y de un campo magnético que oscilan en direcciones perpendiculares entre sí y a su dirección de propagación.

Normalmente estos dos campos pueden oscilar en cualquier orientación, pero si lo hacen en una dirección preferente, se dice que la luz está ‘polarizada’. Este fenómeno se produce, por ejemplo, cuando la luz se refleja en un espejo o en la superficie del mar. Utilizando filtros especiales se puede aislar la luz polarizada, que es el principio que utilizan algunas gafas de sol para eliminar los reflejos.

En el espacio, la luz emitida por las estrellas, el gas y el polvo interestelar también puede estar polarizada. Al estudiar esta propiedad de su radiación, los astrónomos pueden deducir los procesos físicos que provocaron la polarización.

El estudio de la polarización es muy útil, entre otras cosas, para revelar la existencia y las propiedades de los campos magnéticos que el rayo de luz ha atravesado a lo largo de su trayectoria.

Este nuevo mapa fue confeccionado a partir de los datos recogidos por unos detectores del observatorio espacial Planck que actúan de forma similar a las gafas de sol polarizadas. Los remolinos, bucles y arcos de esta nueva imagen bosquejan la estructura del campo magnético de nuestra propia galaxia, la Vía Láctea.

Además de cientos de miles de millones de estrellas, nuestra Galaxia también contiene una mezcla de polvo y gas, la materia prima a partir de la que se formarán nuevas estrellas. Aunque estos diminutos granos de polvo estén muy fríos, emiten radiación con una longitud de onda muy larga – en las bandas del infrarrojo y de las microondas. Si los granos no son simétricos, una gran proporción de su radiación oscila en un plano paralelo al eje mayor de la partícula, lo que provoca que esté polarizada.

Si todos los granos de polvo de una nube estuviesen orientados de forma aleatoria, no se observaría una polarización neta. Sin embargo, los granos de polvo cósmico casi siempre están girando a gran velocidad, del orden de las decenas de miles de millones de veces por segundo, como resultado de las colisiones con fotones y con átomos que se mueven a gran velocidad.

Por otra parte, como las nubes interestelares de la Vía Láctea están atravesadas por campos magnéticos, los granos de polvo en rotación tienden a alinearse con las líneas de campo, orientando su eje mayor perpendicular a la dirección del campo magnético. Como resultado, la radiación emitida por estas nubes presenta una polarización neta que puede ser medida y estudiada.



..

Related Posts Plugin for WordPress, Blogger...